

Data Management and Analytics for Smart Water Systems

Data | Analytics | Insightful Decisions

Overview

- What we do a leading provider of data management and analytics solutions for the utilities sector
- Who we are a quality group of engineers, software & algorithm experts with vast water and energy experience
- Our track record more than 100 installations, world-wide

Our objective: continue our international growth through strategic partnerships with utilities and service providers

The Challenge – Turning Data into Actionable Insights

Anywhere Anytime


Continuity

Comprehensiveness

Convenience

Collaboration

The New Normal – Post COVID-19

IOSight Responds to the Utility Data Challenge

IOSight's Integrated Smart Water Suite

Our Clients – Examples

Water and Wastewater Facilities and Utilities

Desalination

Watersheds and Environment

Installations – Water Treatment, Wastewater Treatment and Desalination Plants

Facility	Location	Capacity
Shafdan WWTP	Israel	397,000 m ³ /day
Jerusalem WWTP	Israel	150,000 m³/day
Everbright Incineration Leachate WWTP	China	2,500 m ³ /day
Herzliya WWTP	Israel	20,000 m³/d
Jardine WPP	Chicago, US	5,300,000 m³/day
Sawyer WPP	Chicago, US	2,726,000 m³/day
Westlake Filtration Plant	California, US	68,000 m³/day
Lahat BWRO Plant	Israel	20,000 m³/d
Granot BWRO Plant	Israel	20,000 m³/d
Sorek SWRO Plant	Israel	624,000 m³/day
Hadera SWRO Plant	Israel	525,000 m³/day
Ashkelon SWRO Plant	Israel	396,000 m³/day
Ashdod SWRO Plant	Israel	384,000 m³/day
Palmachim (ViaMaris) SWRO Plant	Israel	246,000 m³/day
Carlsbad SWRO Plant	California, US	204,000 m³/day
Santa Barbara SWRO Plant	California, US	11,000 m³/day
Larnaca SWRO Plant	Cyprus	54,000 m³/day
Limassol SWRO Plant	Cyprus	40,000 m³/day

Installations – Water Utilities, Watersheds & Environment **Installations** – Water Utilities, Watersheds & Environment

Water Utilities, Watersheds & Environment	Location				
The Chicago Department of Water Management	US				
Current – Chicago River	US				
Mekorot – The Jordan River Watershed	Israel				
The Jerusalem Water Utility	Israel				
The Ramat Gan Water Utility	Israel				
The Haifa Water Utility	Israel				
Las Virgenes Municipal Water District	US				
The Jordan Valley Water Association	Israel				
The Beer Sheva Water Utility	Israel				
Igudan – Dan Regional Association for Environmental infrastructure	Israel				
The Herzliya Water Utility	Israel				
The Kfar Sava Water Utility	Israel				
The Rishon Lezion Water Utility	Israel				

Value Creation for Clients – Use Cases

Operations and Performance

- Water quality monitoring
- Energy cost reduction
- Chemical consumption reduction
- Machine performance monitoring
- Minimization of down time
- Network optimization
- Water loss detection
- Data integrity assurance
- Process optimization
- Knowledge management

Administration and Finance

- Billing & metering
- Chemical inventory management
- Chemicals and energy balances
- Planning vs. execution comparison

Regulatory Compliance

- Comprehensive regulatory reporting
- Contractual compliance
- Adherence with environmental and public health standards

Unique Value Proposition

- Engineering-driven development and implementation
- Vertically integrated an off-the-shelf end-to-end solution for data management and analytics
- Based on vast experience (over 100 installations)
- Seasoned team engineers, data scientists, software
- Water-specific software assets (reports, formulas, analytics)

Delivering proven solutions and outcomes

iGreen is a Best-in-Class Water-Specific Data Management and Analytics Solution

iGreen

Embedded Water Domain

Know-how and Assets

Ease of Use and Scalability

Algorithm Development Functionality

Quality Outputs and Displays

⁵ Cost of Setup and Deployment

Central Secure Database

Data Modelling and Normalization

2 Multi Layer Data Integration and Synchronization

Connectivity

Easy configuration of dashboards and reports by water professionals; Seamless adding of new equipment and tags

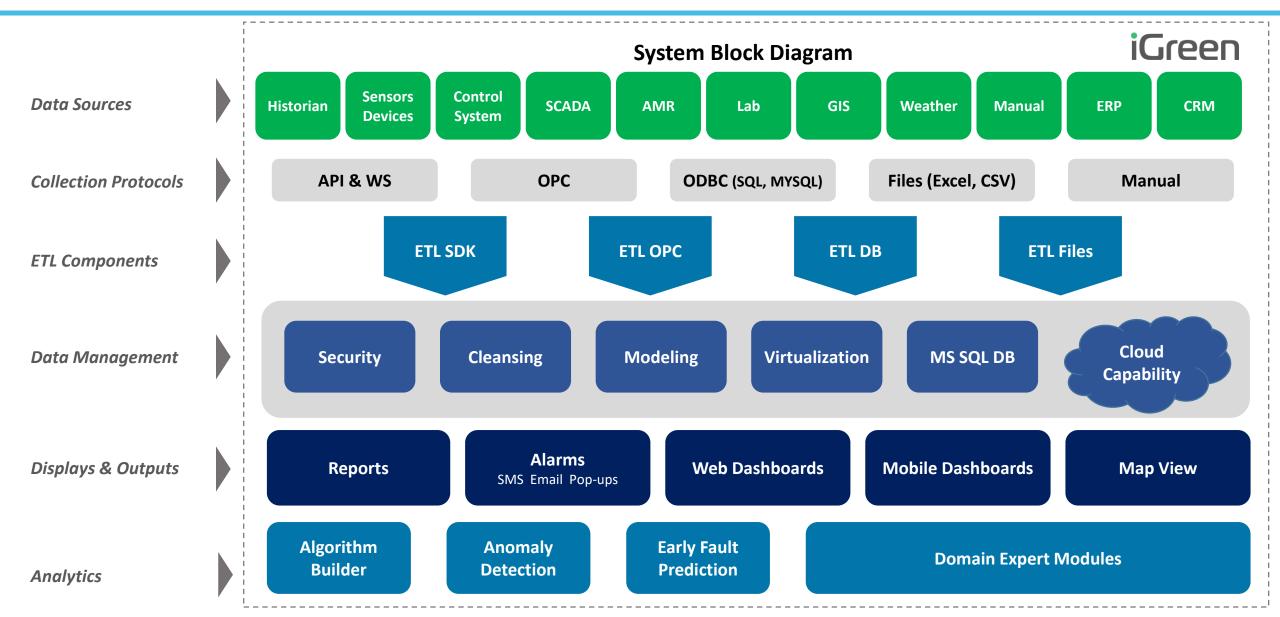
Embedded functionality allowing easy algorithm formulation for anomaly detection, data-driven optimization etc.

Web and mobile dashboards, event management system, robust reporting functionality

Rapid setup and deployment based on proven methodology and vast water project experience

MS SQL Database in the cloud or on premise

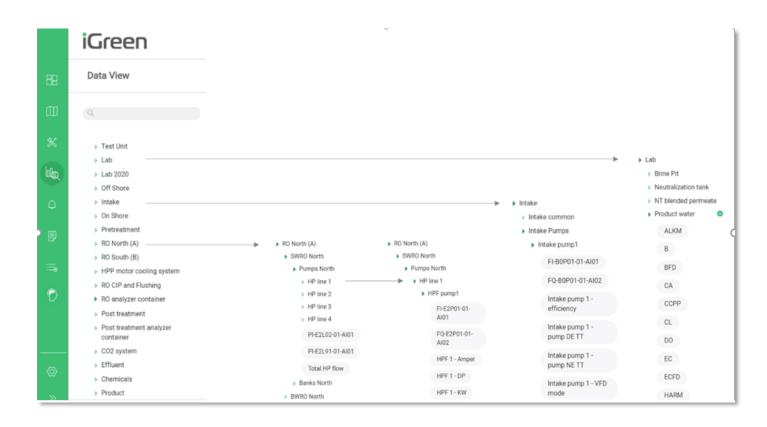
Best in class data normalization and modeling functionality and methodology


Integration and synchronization of data from diverse data sources; Aggregation of data from various levels (equipment / site / region / corporate) while maintaining data coherency and consistency per level

APIs and connectors to SCADA, LIMS, GIS and other data sources

iGreen – System Architecture

iGreen – Data Foundation

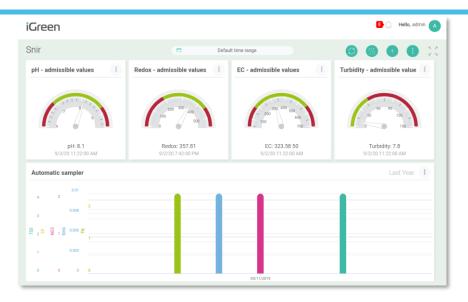

Data Cleansing and Validation

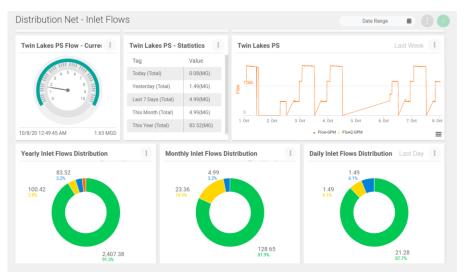
- Pre-processing using data quality concepts and logic rules
- Pre-processing using time series data analysis
- Adding data logic rules factoring, deadband, limits, etc.

Modeling and Virtualizing

- Creating tags based on engineering expressions
- Adding sanity tests to the incoming values
- Structuring the data to an engineering product tree
- Algorithm builder and rule-based engine per tag

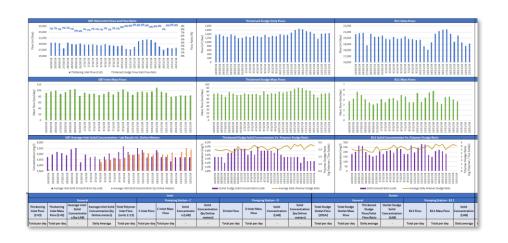
Plant Structure Tree Example





Web and Mobile Dashboards

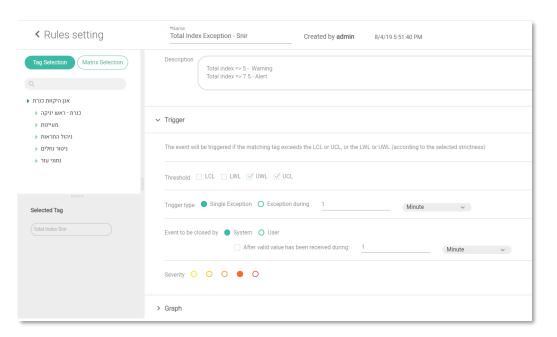
- Mobile and web Interfaces
- Variety of visual widgets
- User-friendly dashboard creation



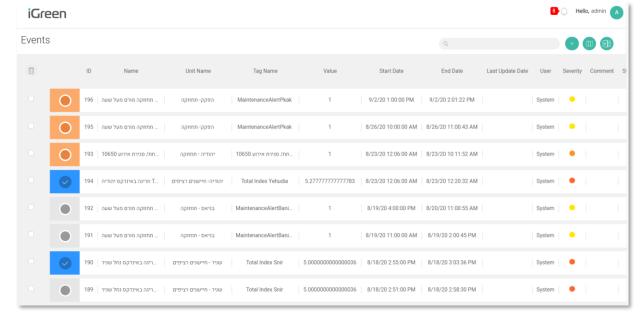
Reporting Engine

- Management and regulatory reports
- Export in multiple formats (Excel, Word, PDF etc.)
- Flexible report creation and distribution (recurrence, trigger-based, on-demand)

		Frequency of data			Total index			Turbidity			Redox			EC			pH			
stream	Histogram frequencies	00 06 12 10	00 06 12	50% 50% 0% 0.0000 #0.4000 0.0000 #0.4000			20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			20 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			30% F 2 6 8 6 5			20N 20 0 0 0 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2				
	Max, median and Min respectivly	fin respectivity 1440 0 %		0.56	0.56	0.56	6.0 7.		10.2			300.8		258.	20010	8.37	8.44	8.47		
	Frequency compared to thresholds	data	MV	5-7.4 0%	7.5-10	M.V 0.00%	0.1	+	99-100	0.1	0.1		0.1		99-100	0 0-1		99-100		
stream	Histogram frequencies	00 06 12 1	00 06 12	10% 5%	on !		2 Z Z Z Z Z Z Z		20		100N		10% 30%							
	Max, median and Min respectivly	1440	0 %	0.00	0.56	1.11	6.8	8.1	10.3	251.0	260.8	268.1	415.4	420.	1 422.1	8.74	8.78	8.85		
ľ	Frequency compared to thresholds	data M.V	5-7.A	7.5-10	M.V	0.1		99-100	0.1	\top	99-100	0.1	\exists	99-100	0.1	_	9-100			
				0%	0%	0.00%	0%		0%	0%		0%	0%		0%	0%	1	100%		
stream	Histogram frequencies	00 06 12 18 00 06 12		50% 50%	20044	7.4 9.9 10.0	10% 5% %	34	463 1637 More	1000 1000 000 2000	106	446 464 Nov	10V 10V	6.0	alle 514 Now	50% SS 25	7.63	8.77 Nov		
	Max, median and Min respectivly	1440	0 %	0.00	0.00	1.67	4.0	4.1	4.4	384.5	404.5	412.1	375.7	387.	7 434.0	8.26	8.31	8.40		
	Frequency compared to thresholds	data	MV	5-7.4 0%	7.5-10 0%	M.V 0.00%	0.1	,	99-100 0%	0.1 0%		99-100	0-1 0%		99-100	0-1 0%	9	0%		



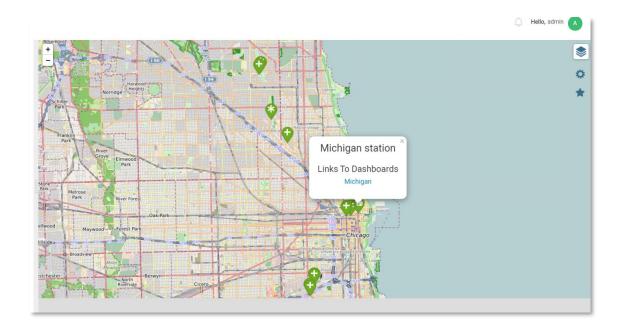
Rules-Based Event Management System



- Rule-based event management
- Alerts can be sent by email or SMS
- GIS interface

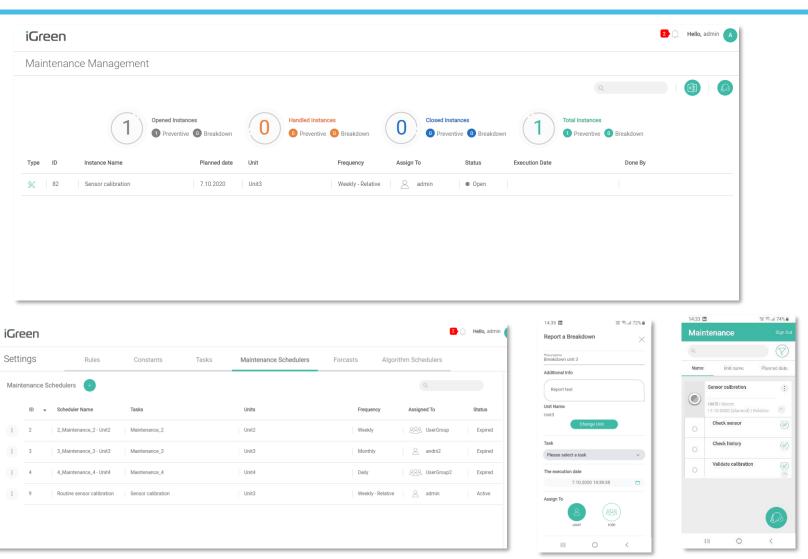
Rules Engine

Event Management Screen



GIS Enabled Map View

- Visually display real-time situation (e.g., water quality) across locations
- Link to dashboards and event management



Maintenance management

- Web and mobile interfaces for tracking and managing preventative and corrective maintenance tasks
- Easy, efficient and effective evaluation of asset condition
- Equipment maintenance scheduling processes

Anomaly Detection and Early Fault Prediction

iShed

Water Quality Monitoring in Rivers and Watersheds

- Contamination / anomaly detection
- Downstream propagation
- Elimination of 95% of false alerts

iDetect

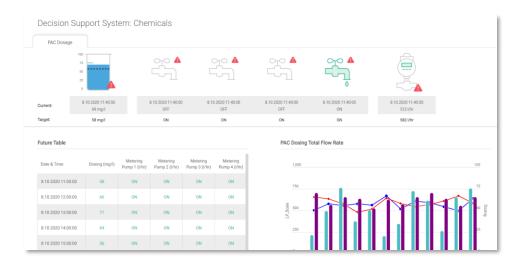
Early Fault Detection Engine

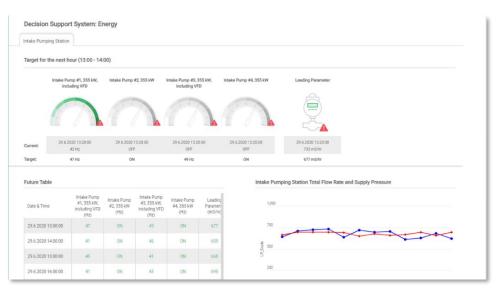
- Machine failure
- Quality exceptions
- Flow and pressure anomalies

Facility and System Optimization

iWWT

Optimization for WTPs and WWTPs

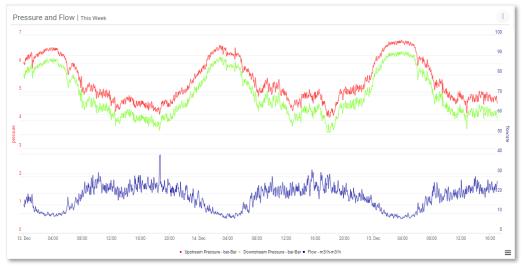

- Energy consumption of pumps/blowers
- Chemical dosing
- Up to 10% cost savings


iOptiNet

Water Supply System Optimization

- Real-time network operations optimization
- Optimization of energy costs

NRW and Leak Detection

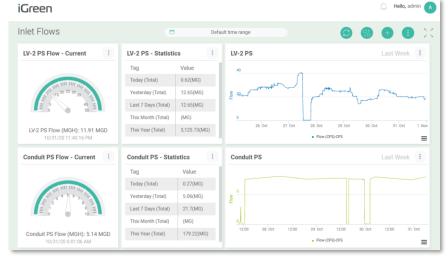

iNet

NRW in District Metered Areas (DMAs)

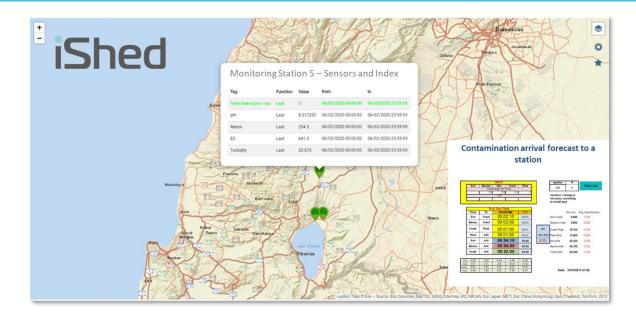
- Online water balances based on MNF.
- Water-loss decision-support system
- Detecting anomalies and potential bursts

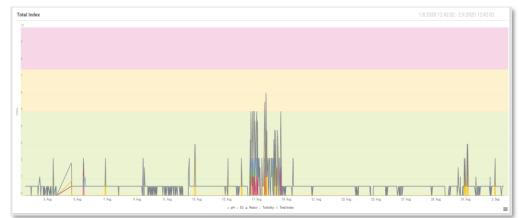
Case Studies

Las Virgenes Municipal Water District, California, US



- COVID-19 "new-born"; Launched in March, go-live in June
- 100% remote project management and execution
- Reservoir, filtration plant, distribution network
- Establishing the data foundation
- Monitoring and management insights
- Web and mobile dashboards
- Management and regulatory reports
- Flows, water levels, quality, energy, chemicals


Jordan River / Sea of Galilee Watershed, Israel

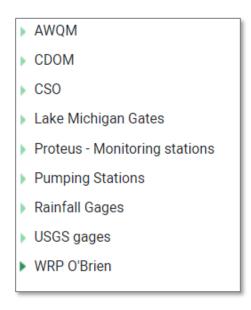


- Operational since 2017
- Efficient, comprehensive "Nerve Center"
- 500% productivity improvement
- Algorithm-based anomaly detection
- Elimination of 95% of false alerts
- Propagation calculations
- Event management and alerts
- Web and mobile dashboards

Chicago Department of Water Management

- Web dashboards and reports for the Chicago Department of Water Management
- Integration and management of data collected from 3 SCADA systems
- Jardine and Sawyer Water Purification
 Plants and the water supply system

H2Now Chicago – Real-time water quality monitoring


Goals

- Obtain real-time information about the microbial quality of the Chicago River
- Communicate these data to the public
- Educate the public
- Gain insights into how the river water quality responds to changing conditions and events, such as CSOs

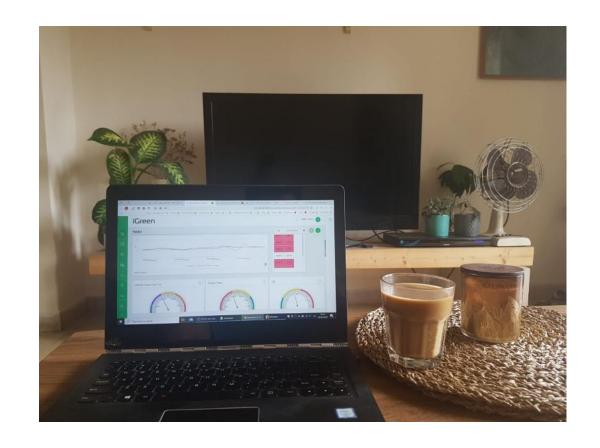
Status

- iGreen installed and working
- iShed underway

Data Sources

Shafdan WWTP

- The largest wastewater treatment plant in Israel
- Treats approximately 145 million cubic meters of wastewater per year
- iGreen the center of operations, and the main DSS
- Data collected from SCADA and Lab (over 4,000 tags)
- Outputs engineering and regulatory reports, online web dashboards
- During COVID-19
 - remote access, and ability to monitor the facility's performance
 - numerous daily reports and web dashboards
 - new cyber security component Waterfall data diode enables mobile phone access



Palmachim Desalination Plant, Israel

ViaMaris

- One of the major desalination facilities in Israel
- Produces approximately 90 million cubic meters of water per year
- During COVID-19 period
 - iGreen ensures complete business continuity
 - Remote access by plant engineers and managers
 - More frequent report distribution

The Israel Water Authority

Control center for monitoring multiple SWRO facilities

- Israel produces 80% of its drinking water from sea water desalination and is considered a world leader in the field.
- With 5 huge facilities built on BOT, the government arm for designing, inspecting and collecting the desalinated water is utilizing iGreen to keep a close watch on plant operations while assuring both water volumes and water quality.

Thank You

Guy Meiri, Head of Business Development

guy@iosight.com

+972-54-4290582

