

12th January 2021 Tuesday

3:00 pm - 4:00 pm SGT

Time	Agenda	Presented by
3:00 - 3:05pm	Opening & Housekeeping	Singapore Water Association
3:05 - 3:15pm		Mr YONG Wong Jin CEO of Fluence Asia
3:15 - 3:45pm	Delivering Sustainable water Solutions Through Decentralization	Mr Gilad Yogev Senior Product Manager of MABR Products at Fluence Corporation
3:45 - 3:55pm	Q & A	SWA / Fluence Corporation
3:55 – 4:00pm	Closing	Singapore Water Association

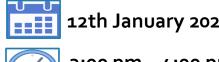
Joint Organisers

HOUSEKEEPING

- ✓ To ensure better connectivity, please mute your microphone and turn off the camera. You may communicate with us after the event.
- ✓ Please share your questions in the chat where we will try to provide answers where possible in the Q & A Segment.
- ✓ Do identify yourself so we can respond to any unanswered questions
- ✓ We will be recording this session and reserve the rights to the video
- ✓ Please complete a post event survey which upon return, we will forward the recording and presentation deck to the respondents.

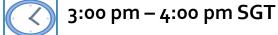
12th January 2021 Tuesday

3:00 pm – 4:00 pm SGT



DISCLAIMER

- All information shared is for general information only and does not contain or convey any legal advice or administrative assistance.
- Information shared today is true and accurate as of publication date.
- The organisers and speakers reserve all rights in the provided materials



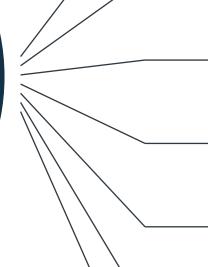
Welcome Address

Mr YONG Wong Jin CEO of Fluence Asia

Global Water, Wastewater & Reuse Treatment Solution

Introduction of Fluence

fluence - Value from Water



Merging global innovators with a field-proven execution team

to deliver

breakthrough water technology solutions to the world

Fluence is a foreign company with core technology from Israel

Traded on the Australian Stock Exchange(ASX: FLC)

R&D Center in **Israel**, with 4 production plants, 3 in China and 1 in Israel

210+ MABR Project References in Asia

Wastewater treatment for reuse in municipal, industrial and commercial sites

300 highly-trained water professionals

Experience operating in 70 countries

Innovative Solutions

WATER TREATMENT

DESALINATION

WASTEWATER TREATMENT

WASTE-TO-ENERGY

REUSE

DECENTRALIZED TREATMENT

Fluence Asia Footprint

Entites

3 plants + 3 regional offices Shanghai, Beijing, Manila

213 Projects

Across 15 provinces in China + SEA

> 40 Partnerships

Manufacturing plants

Partnerships/Projects

Panjin Changzhou 🕞 🗟 Shanghai (A) Yiyang Myanmar Laos Thailand Manila Indonesia

Proprietary and confidential information © Fluence 2021

Fluence Asia Footprint

Fluence (former named as Emefcy) entered Asia market with its MABR wastewater treatment solution in 2016, starting from China and established the 1st manufactory plant in Jiangsu Province to support the product delivery to projects but not limited to Asia.

2016-2017

2018

2019

2020

- Changzhou Plant set-up
- Branches in Beijng & Shanghai
- Commitment to Rural WW Market

Production Line Official Launch in China

Business development in Philippines

New Business Segment developed: Highway Wastewater

Corporation Agreement signed with Hubei ITEST in China: MABR WW solution to applied in Hubei Highway System in 3 years with estimated capacity more than 60,000m3/d (estimated US\$45M)

Multi-field Business, Steady Development

- 130+ Project references in Asia focus on water & wastewater treatment
- Set up Manila Office

New Plants Set-up

 2 New Plants in China set up to support production for market globally

Deepen in China & Explore Overseas

- Explore in Railway WW treatment segment
- Signed SHV project in Cambodia project with capacity of 12,400m3/d
- MABR endorsement by magazine upon Membrane Technology https://doi.org/10.1016/S0958-2118(20)30079-3

Key Business Partners in Asia

Panjin Liaoning Province Yiyang Hunan Province

Thank you!

Visit our website: www.fluencecorp.com

Proprietary and confidential information
© Fluence 2021

© Fluence 2021 TM

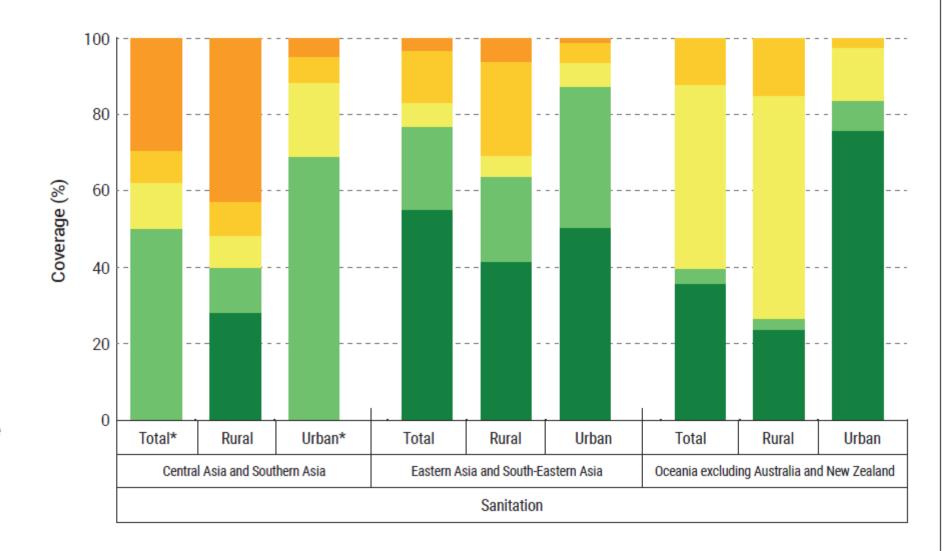
Water Stress: Widespread & Growing

2.2B People Lack Safe Drinking Water

4.2B People Lack Safe Sanitation

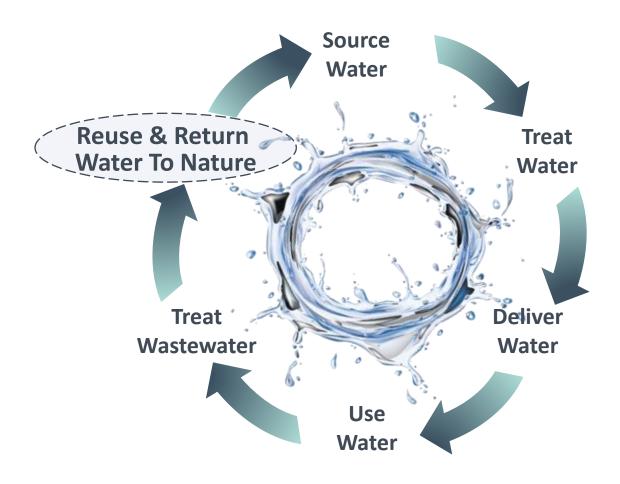
Population Growth 2019 → 2050

Global Water Consumption by 2050



water deficit by 2030

Figure 9.4 Sanitation coverage in the SDG sub-regions of Asia and the Pacific (excluding Australia and New Zealand), 2015



*Insufficient data to estimate safely managed services.

Source: WHO/UNICEF (n.d.).

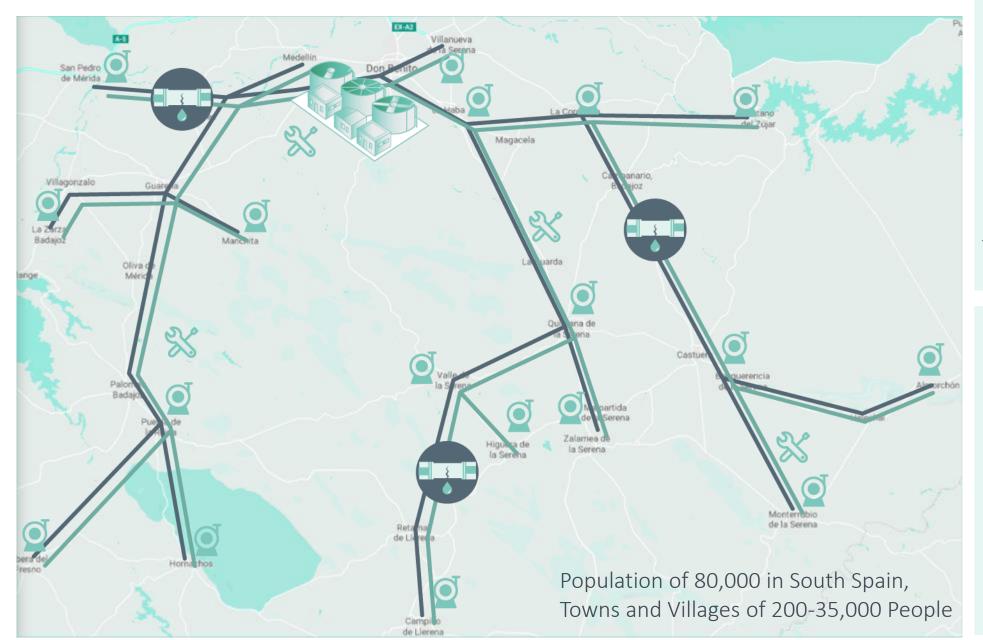
Future of Water: Manage the Full Water Cycle Via Reuse

Future of Water

New or Expanding Cities

Rural Areas

Developing Countries



Limited or No Water Infrastructure
Water Reuse Is Essential

The Centralized and Conventional Approach to Wastewater Management

CAPEX

CENTRALIZED PLANT

Huge Capex up-front, slow to build and expensive to maintain

SEWER NETWORK

Pump and pipe network is 2/3 of Capex

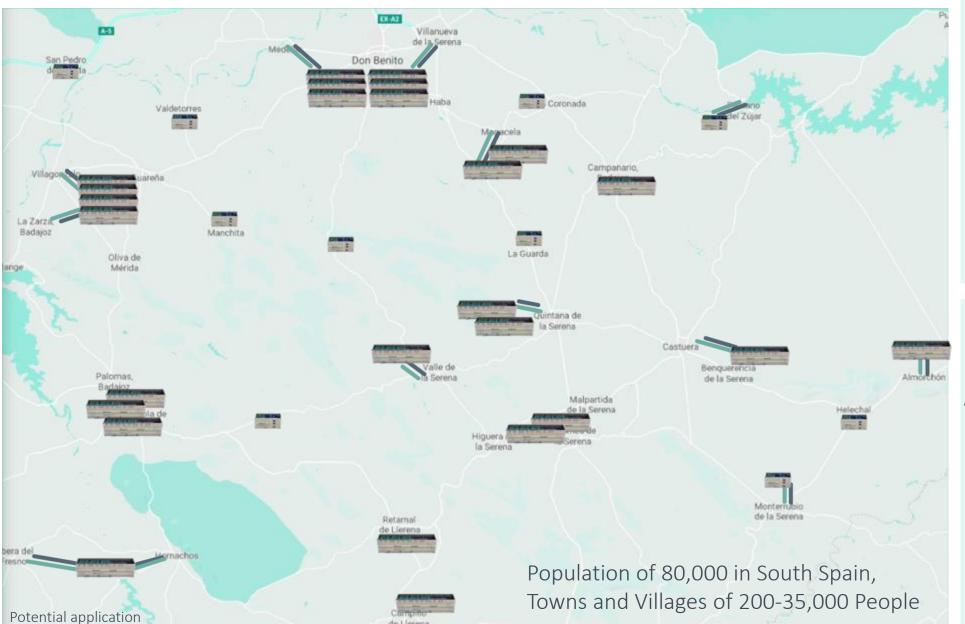
DISTRIBUTION NETWORK

Treated wastewater is lost – cannot be reused locally

OPEX

PUMPING STATIONS

Pumps increase system energy demand ~50%


MAINTENANCE

Plant and network maintenance is expensive and complex

FAILURES & LEAKS

Failure and leaks can cause catastrophic pollution

The Decentralized Approach to Wastewater Management

CAPEX

DECENTRALIZED PLANTS

Capex spread out over time, fast to deploy and upgrade as needed

SEWER NETWORK

Eliminates most of the costs of pipe and pump network – no large pipes

DISTRIBUTION NETWORK

Treated wastewater is a valuable resource - easily reused locally

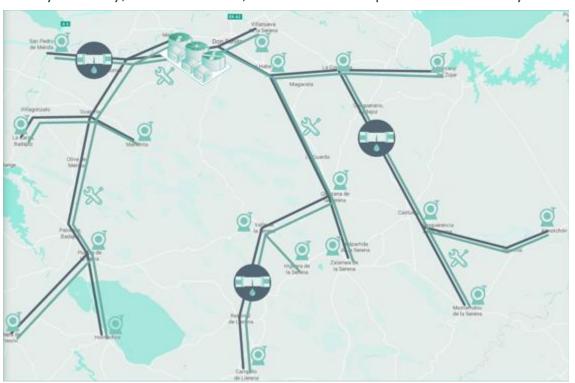
OPEX

EFFICIENT TREATMENT

Aspiral[™] saves up to 90% of aeration energy. Pumping is negligible.

OPERATION

All plants operated remotely under central control
Renewable energy for off-grid O&M


MAINTENANCE

Resilient to local failures Maintenance is simple and quick

Old Wastewater Management CENTRALIZED

One big network:

Very costly, hard to fix, doesn't help the water cycle

Future of Wastewater Management DECENTRALIZED

Network of cost-efficient small plants:

Modular, Just In Time Capex, easy to scale & maintain

Future of Wastewater

CAPEX

Save 2/3 of capex for sewer network

Just-In-Time infrastructure

Energy

Save energy for collection and distribution

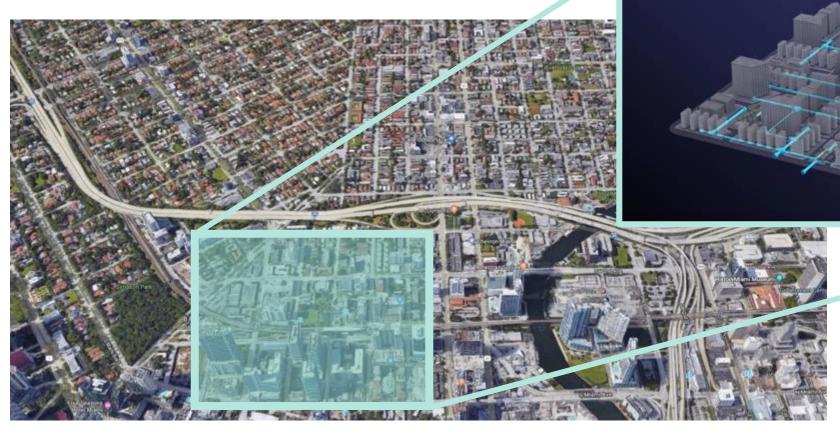
Energy efficient treatment

Operation

No need for water professionals - up to 50% savings in operation

Capability for solar-powered system to operate off-grid

Maintenance



Durable and reliable prefabricated systems

Plant optimization with remote connectivity

New or Expanding Cities

Design infrastructure to last for years – scale as the city grows Smart city water management – efficient and sustainable

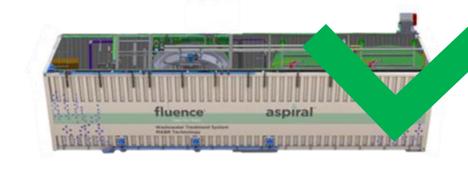
Overlay: The Best Way To Upgrade Existing Infrastructure

Old decayed water infrastructure will require upgrade in big cities

Overlay of decentralized system can bypass the old network

Deployment is fast and simple, gradual project implementation

Decentralized systems are the only solution


Entirely Off-grid, solar-powered systems to treat wastewater and supply water for remote communities

Fast improvement in water stress with no need for long and complex projects

Start with a decentralized approach:

- Cost efficient
- Simple, fast
- Independent
- Sustainable

Global Evidence and Support

- China 13th 5-year plan: includes wastewater treatment in most of 130,000 administrative villages
- EPA provide guidelines for decentralized treatment for 20 years
- Sydney water- sewage mining
- ISO Standards:
 - Guidelines for Life Cycle Cost Analysis in Planning of Decentralized Wastewater Treatment Systems for Reuse
 - Guidelines for decentralized and onsite water reuse system Design principle of a decentralized / onsite system
 - Guidelines for Cost Analysis in Planning of Decentralized Wastewater Treatment in Urban Areas

Environmental Protection

Washington, D.C.

ŞEPA

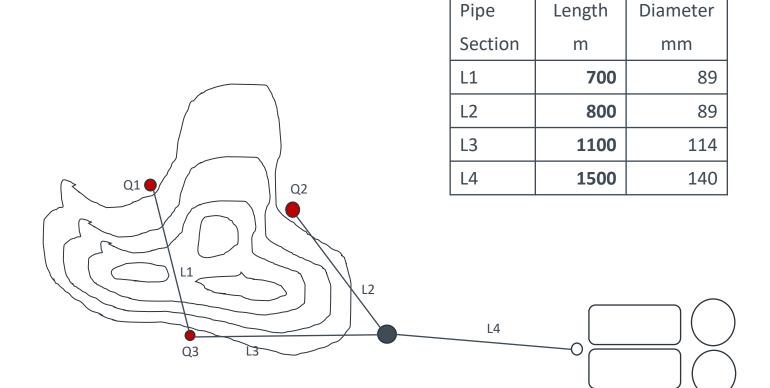
Decentralized Systems Technology Fact Sheet Aerobic Treatment

Policy

Sewer Mining

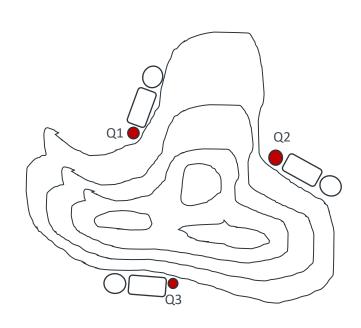
Centralized vs. Decentralized Cost Analysis

	Scenario I	Scenario II	Scenario III	Scenario IV
Item	Centralized	Decentralized		
Total investment	19,840,354	10,741,188	10,741,188	10,741,188
Total reinvestment	4,604,938	2,582,440	2,582,440	2,582,440
Reuse benefits (JOD/year)	0	0	0	37,170
Total O&M (JOD/year)	245,871	364,835	243,635	206,476
TOTAL PROJECT VALUE	25,324,000	17,498,000	15,635,000	15,063,000
Annualized cost (JOD/year)	1.647.362	1.138.270	1.017.079	979.870
O&M JOD/m ³	9,66	0.98	0.66	0.56
Specific treatment cost per m ³	4.43	3.06	2.74	2.64



Supporting regulation

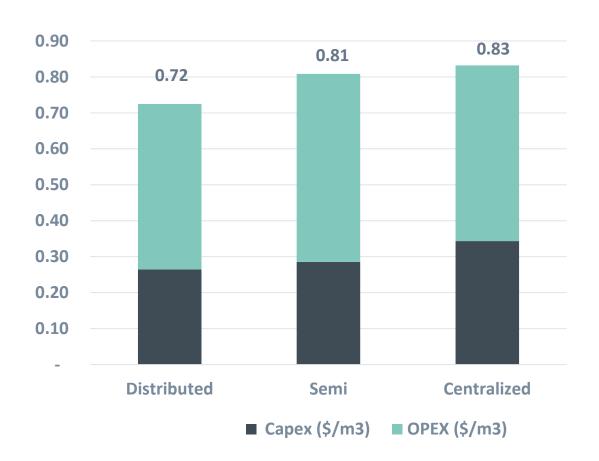
Parameter	China 1A	China grade IV	Philippines DAO 2016
COD	50	30	
BOD ₅	10	6	50
TSS	10	10	70
TN	15	1.5 (10 in para IV)	
NH ₄ ⁺ -N	5	1.5	0.5
TP	0.5	0.3 (1 for lake, reservoir)	1
Nitrate			14


Conceptual Example – Cost Benefit

Pump	Outlet	Pressure	Power
station	m3/d	bar	kW
Q1	300	2.04	1.4
Q2	300	2.46	1.7
Q3	600	2.32	3.3
Q4	900		

Conceptual Example – Cost Benefit

Treatment	Capacity
plant	m³/d
Q1	300
Q2	300
Q3	300


- No piping
- No pumping stations
- No pumping energy

- Installation cost benefit: US\$ 134k

- Life cycle cost benefit: US\$ 442k

Degree of Distribution Cost Analysis

Degree of Distribution	Scenario 1 Centralized	Scenario 2 Semi	Scenario 3 Decentralized
Type of WWT	CAS	MABR	MABR
Number of WWTPs	1	2	3
Number of Pumping Stations	3	2	1
Collection System (m)	2,400	500	0

Fluence's Smart Products Solutions

AspiralTM: treats wastewater for communities from 150 to 35,000 people

NIROBOXTM: potable water for communities of 3,000 to 500,000 people

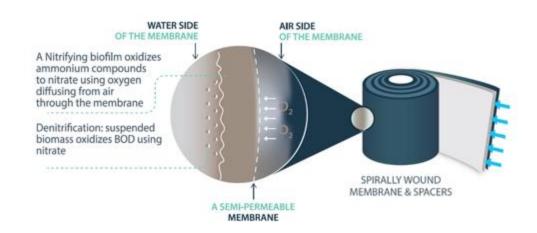
SUBRE: treats
wastewater for
communities up
to 1 million
people

Standardized Building Blocks:

Installed In Weeks, Not Years

Low Cost Operation

Simple To Maintain


Easy To Upgrade

Modular Plants

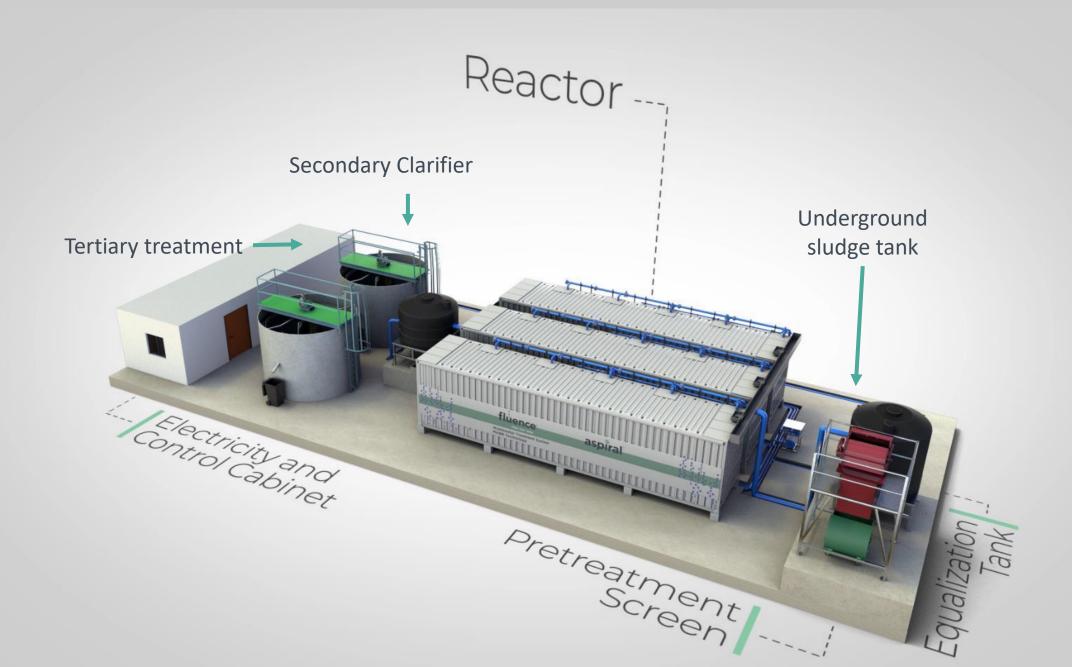
Fluence MABR Overview

Fluence MABR Process

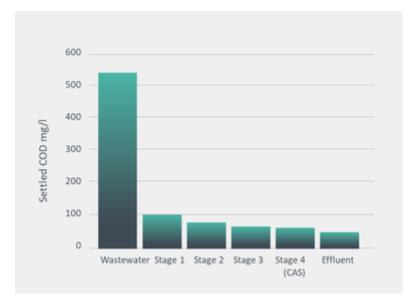
Fluence MABR Benefits

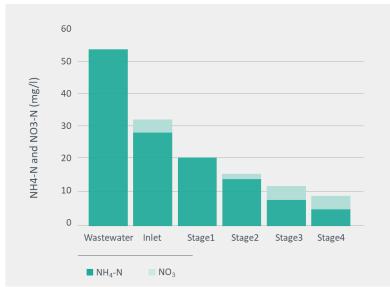
- Well-Validated Technology: +160 plants
- Low-Energy Treatment: 90% less than conventional technologies
- Highly Efficient Biological Nutrient Removal: TN: <5 mg/L, TP: <1 mg/L
- ✓ Patented Globally
- Minimal Footprint and civil works
- ✓ Meets Highest Regulatory Standards And Enables Reuse

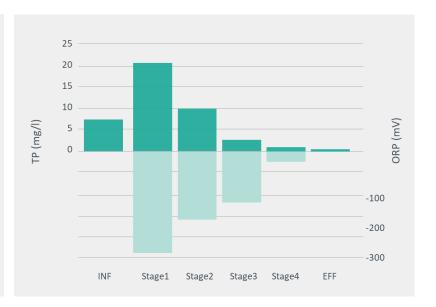
MABR Validation

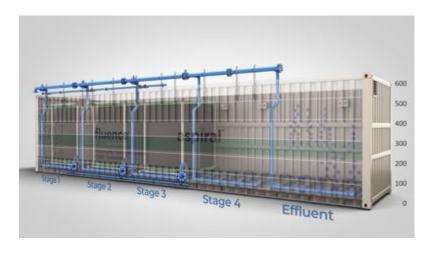

"The three vendors of the technology...have each achieved important milestones in the last 18 months...interest from utilities remains high, with myriad commercial demonstrations being conducted all around the world"

-GWI April 2019 Article


"One of the Top 10 Water Tech Inventions of the Decade"


	Breakthrough technology	Developer	Description
1	Noreda	Royal HackoningOHV	Aerobic granular studge technology which saves 50% on energy costs while removing nitrogen and phosphorus, it has become a global success for its licencees.
2	Nanocomposite membranes	NanoH20/LG Nano	High-performance nano-engineered thin film reverse osmoots membranes. The takeover by 1G Nano- represented the highest exit valuation of any water technology during the 2010s.
3	Thermal hydrolysis	Cambi, Veolia, Eliquo, Sustec, and others	High-pressure boiling and decompression as a pretreatment for studge digestion. It is rapidly becoming the standard for maximising energy recovery in studge treatment.
4	Membrane-aerated biofilm reactor	Fluence, OxyMem/ OuPort, Suez WTS	A modular serobic wastewater treatment system where the biofilm grows on the membranes which provide the seration. Fluence has done extremely well with it in China.





Decentralized is where MABR really excels

Decentralized is where MABR really excels...

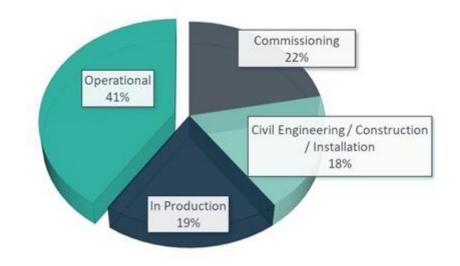
Westgrove, Philippines, 4XL3 400 m³/d

Tonglu, China 1xL3 100 m³/d

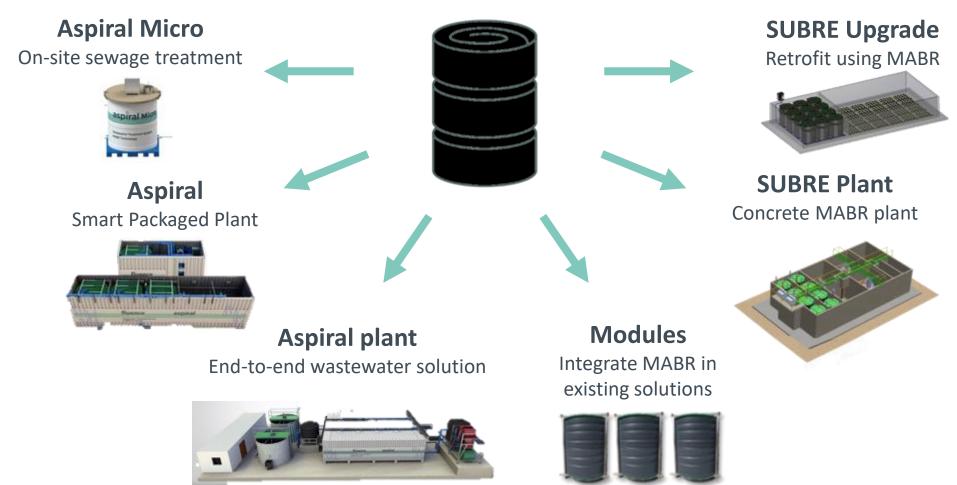
Luoyang, China 2xL3 300 m³/d

Aspiral Micro, China, 5 m³/d

Xiaogan, China 2xL3 200 m³/d



200 existing projects in China alone (3 years)



Project / Installation Status	Quantity
In production	37
Civil Engineering / Construction / Installation	35
Commissioning	42
Operational	78
Total	192

Fluence MABR Configurations

Thank you!Gilad Yogev, MABR Product Manager: gyogev@fluencecorp.com

Visit our new website: www.fluencecorp.com

flience

Q & A

12th January 2021 Tuesday

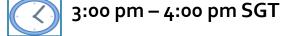
3:00 pm – 4:00 pm SGT

Upcoming.....

SWA/SgWX Water Utilities Series – Total Water Management in Hong Kong

13rd January 2021, 3pm – 4pm

SWA/SgWX Industrial Water Series - Asia Pacific Brewery Singapore


28th January 2021, 3pm – 4pm

Young Water Professionals Sharing with SUTD

29th January 2021, 4pm – 5pm

12th January 2021 Tuesday

The first and th

Thank You

Singapore Water Association T: (65) 65150812 E: enquiry@swa.org.sg www.swa.org.sg

12th January 2021 Tuesday

3:00 pm – 4:00 pm SGT

SINGAPORE WATER ASSOCIATION

