4th March 2021, Thur 9:00am to 10:30am SGT

Canadian Virtual Showcase

Jointly organised by :

Canada

OPUB SINGAPORE WATER EXCHANGE

Welcome

Time (SGT)	Agenda
9:00am – 9:10am	Opening & Housekeeping by SWA
9:10am – 9:20am	Opening Remarks by Her Excellency Ms. Lynn McDonald, High Commissioner of Canada in Singapore
9:20am– 9:30am	Keynote Address by Mr Moh Tiing Liang, Deputy Director (Industry and Technology Collaboration) PUB, Singapore's National Water Agency : Opportunities in the Singapore water sector
9:30am – 9:35am	Presentation by Tradeworks Environmental Inc
9:35am – 9:40am	Presentation by Pani Energy
9:40am – 9:45am	Presentation by Waterlix Inc
9:45am – 9:50am	Presentation by <u>SewerVue Technology Corp</u>
9:50am – 9:55am	Presentation by WaterShed Monitoring
9:55am – 10:00am	Presentation by <u>Anaergia</u>
10:00am – 10:25am	Q & A / Panel Discussion Moderator : Mr Kunal Shah SWA Council Member Managing Director of Anaergia Inc
10:25am – 10:30am	Closing by Singapore Water Association

4th March 2021, Thur 9:00am to 10:30am SGT

Jointly organised by :

(+)

Canada

Housekeeping

- To ensure a smooth session, please mute your microphone and turn off the camera. You may communicate with us after the event.
- Please share your questions in the chat where we will try to provide answers where possible in the Q & A Segment.
- Do identify yourself so we can respond to any unanswered questions
- ✓ We will be recording this session and reserve the rights to the video

4th March 2021, Thur 9:00am to 10:30am SGT

Canadian Virtual Showcase

Water Tech Companies

Jointly organised by :

Canada

SINGAPORE WATER ASSOCIATION

OPUB SINGAPORE WATER EXCHANGE

Disclaimer

- All information shared is for ** general information only and does not contain or convey any legal advice or administrative assistance.
- ** Information shared today is true and accurate as of publication date.
- * The organisers reserve all rights in the provided materials

WaterShed Monitoring

Jointly organised by :

Canada

((+))

OPUB SINGAPORE WATER EXCHANGE

Moderator

Mr Kunal Shah Council Member, SWA Managing Director, Anaergia Inc

Kunah is a SWA Council Member and Managing Director & Regional Business Development Head of Asia at Anaergia , a global leader in Organics waste management maximizing resource recovery from Wastewater, Solid waste and Agricultural waste. Kunah himself is a Chemical Engineer with over 12 years of global experience in the space of water, wastewater, Municipal solid waste and Bioenergy.

Opening Address

Her Excellency Ms. Lynn McDonald High Commissioner of Canada in Singapore

Presenters :

4th March 2021, Thur 9:00am to 10:30am SGT

Canadian Virtual Showcase

Water Tech Companies

(+)

Jointly organised by :

Canada

SINGAPORE WATER ASSOCIATION

OPUB SINGAPORE WATER EXCHANGE

Canadian Virtual Showcase

Water Tech Companies

Canada

SINGAPORE WATER ASSOCIATION

SIIIa

Mr Moh Tiing Liang Deputy Director (Industry and Technology Collaboration Department) PUB, Singapore's National Water Agency

Moh Tiing Liang is a Deputy Director at the Industry & Technology Collaboration Department in PUB, Singapore's National Water Agency and oversees PUB's technology collaboration efforts with the aim to grow technologies through partnerships with the industry and other stakeholders. In this role, he leads a team to commercialize water technologies that are codeveloped by PUB. Tiing Liang graduated in mechanical engineering from the National University of Singapore and obtained his EMBA from Rutgers University.

> WaterShed Monitoring

Canada

SINGAPORE WATER ASSOCIATION

OPUB SINGAPORE WATER EXCHANGE

SIIIa

4th March 2021, Thur 9:00am to 10:30am SGT ((+))

Water Tech Companies

Canadian Virtual Showcase

Jointly organised by :

OPUB SINGAPORE WATER EXCHANGE

Upcoming

17th March 2021

[Hybrid] Behind the Scene: Brave Blue World, sponsored by DuPont, SUEZ and Xylem

24th March 2021

[Webinar] Israeli Digital Water Technologies with Ministry of Economy and Industry, Israel

WaterShed Monitoring

Canadian Virtual Showcase

Jointly organised by :

Canada

\bigcirc	PU		SINGAPORE WATER EXCHANGE
------------	----	--	--------------------------------

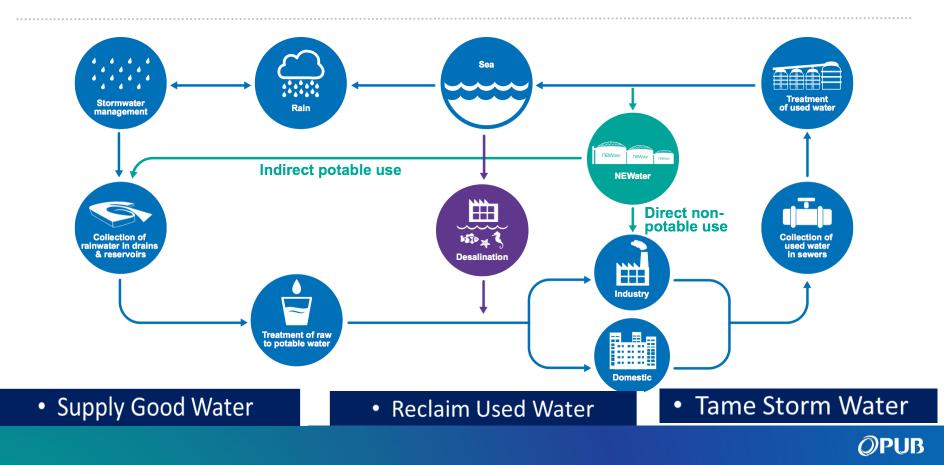
Thank You

For further queries on this event, please contact :

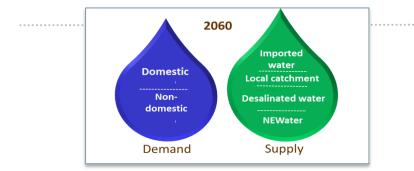
Singapore Water Association T: (65) 6515 0812 enquiry@swa.org.sg www.swa.org.sg

Presenters :

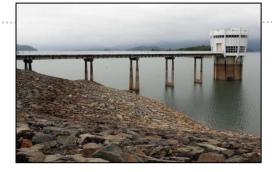
ENVIRONMENTAL



Opportunities in the Singapore Water Sector


Presented by Mr <u>Moh</u> Tiing Liang Deputy Director (Industry and Technology Collaboration)

PUB Manages the Entire Water Loop


Singapore's Water Challenges

Rising Water Demand

Land Constraints

Water Scarcity

Rising Public Expectations

Strengthening Singapore's Water Resilience

REUSE. REUSE. REUSE.

Water Reuse

TAKE THE SALT OUT

Seawater Desalination

Technology as the Lever for Water Sustainability

PUB leverages technology to overcome water challenges and meet long-term water sustainability

Preparing Singapore for the Future

Desalination and Water Reuse

Reduce energy consumption Current: 3.5kwh/m³ Long-term goal: <1 kWh/m³ by 2050

2 Used water treatment

Improve treatment energy self-sufficiency Current: 25% Long-term goal: 100% by 2050

1,000 m³/day Integrated Validation Plant

Industrial Water Solutions

Reduce water consumption by industries Current: cumulative 15 MGD savings Long-term goal: cumulative 100 MGD by 2060

4 Waste Reduction and Resource Recovery NEW

Reduce amount of dewatered sludge sent to incineration Current: 0.16kg/m³ Long-term goal: 0.08 kg/m³ by 2060

Coastal Protection NEW

Increase coastline protection

2025 target: Completion of integrated coastal-inland drainage model and site-specific engineering studies Long-term goal: 100% coastline protection by 2050

Collaborating with the Industry

Vibrant Water Ecosystem with over 200 Companies & more than 25 Research Centres

Co-digestion of Used Water Sludge and Food Waste

Anaergia

- To demonstrate co-digestion of used water sludge and food waste in enhancing biogas production.
- Over 2 to 3 times average specific biogas yield compared to conventional sludge digestion.
- Co-digestion of used water sludge and food waste will be adopted in the future "Tuas Nexus" water reclamation plant cum solid waste incineration plant project.

Detection of Heavy Metals in Used Water

Island Water Technologies

Sentry bio-electrochemical sensor

- The Sentry bio-electrochemical sensor is used to detect presence of heavy metals in the used water
- Installed at Water Reclamation Plants and factory sites since Oct 2020
- Collection of real-time data for baselining, calibration, and validation of sensors is ongoing

Launchpad at the Singapore Water Exchange

- An ecosystem of different stakeholders in the water value chain.
- A platform to showcase local water technologies and spur commercialisation.

Singapore International Water Week

SIWW2021 Event Format

SIWW2021 SPOTLIGHT) 🚟 21 June 2021

- High-level summit for water leaders in governments, utilities, academia and industry
- Hybrid: physical for Singapore attendees, virtual for overseas attendees
- Co-located with World Cities Summit

- SIWW2021 ONLINE 21 June 2 July 2021
- Thematic webinars
- Virtual Water Convention technical and poster sessions
- Virtual Water Expo and product showcases

SIWW2021 Key Thematic Areas

Climate Resilience

Building resilience to impacts of climate change on urban water systems

Digital Water

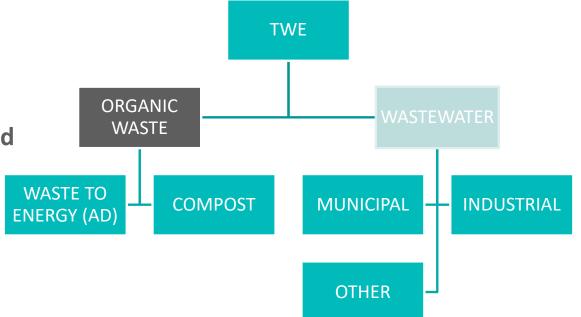
Leveraging digital technologies across urban water cycle to achieve optimization and efficiency

Resource Circularity

Embracing circular resource management to reduce water, energy and resource footprint

Thank You

TRADEWORKS ENVIRONMENTAL


A NEW PARADIGM IN ORGANIC WASTE AND WASTEWATER TREATMENT

TRADEWORKS ENVIRONMENTAL – COMPANY PROFILE

Biological solutions for the treatment of organic wastes and wastewater by:

- Integrating the Ydro Process[®] in existing wastewater and organic waste treatment systems
- Offering unique solutions for process analytics and optimization
 - hard-to-treat problems
 - Troubleshooting systems
- Development of **Corporate Sustainability Goals** using Ydro Process [®]
- **Global Network** agents and distributors to support industrial and municipal customer applications

We are a team of Engineers and Scientists dedicated to providing sustainable Waste & Wastewater Treatment Solutions

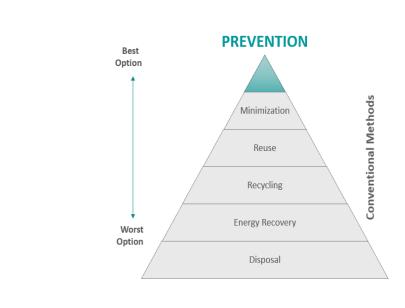
CHALLENGES WITH <u>CONVENTIONAL</u> ORGANIC WASTE & WASTEWATER TREATMENT TODAY

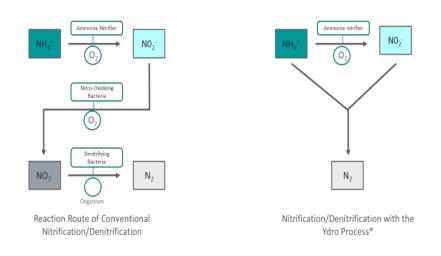
- High treatment, energy and disposal costs
- GHGE (big carbon footprint, with very high costs for alternatives)
- Additional Infrastructure (expansion, more processing, etc.)
- Significant negative by-products with conventional methods

"1L of gas can contaminate 1M Liters of water" -Gov. of Canada

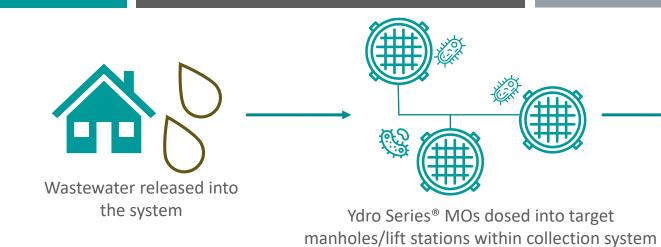
- Unsustainable (always one step behind the problem)
- Chemical Based (adding more issues & costs)
- Targeting symptoms only
- Growing demand stressing systems

THE SUSTAINABLE SOLUTION: THE YDRO PROCESS®


- **Products:** Ydro Series [®] Microorganisms
 - Specialized microbial strains that enhance the microbial community and its abilities to degrade organic compounds
 - Suite of 25+ formulations according to the wastewater characteristics and target objectives
- **Process:** Technical/Operational Support
 - Parameter adjustments according to targeted objectives
- Service Application: Activation/Dosing
- **Consultation-** Technical know-how biological systems
- Equipment PRIME SCREEN™
 - Biologically enhanced primary screening



THE YDRO PROCESS®


The Ydro Process[®] is a proven sustainable wastewater treatment method that results in:

- $\circ~$ Optimization of existing biological processes
- Elimination of H2S and FOG
- \circ Reduction of:
 - Sludge (+50%)
 - Influent parameters
 - Electricity consumption (15%+)
 - Green House Gas Emissions
 - O&M Costs (35%+)
- \circ Improvement of Effluent
- Resilience to toxic shock and loading

HOW IT WORKS SEWER GRID APPLICATION

WWTP consumes less electricity and produces less sludge

The Ydro Series® Microorganisms utilize the Sulphur as their "electron acceptor". This way, the mechanism of H2S formation is disengaged, and odors are not formed in the first place.

2. FOG REDUCTION

3. INFLUENT REDUCTION

PROJECT – PRIME SCREEN™

Collection System Application /Very Fine Scree at the headworks

Objectives:

Collection system application:

- 1. Eliminate Odors & FOG in Collection
 - System & Lift Station (EPA issues)
- 2. Eliminate FOG and clogging in Pipes

Fine Screen to remove:

- Hair, ling, strings, rags, stickers, fibrous solids, etc.
- 2. Protect the overall integrity of the system

Project date: November 2019; ongoing Client: City of Delphos Place: Delphos Ohio, USA

PROJECT – THERMI LAKE BEFORE & AFTER

Rehabilitation of Lake - Recipient of Municipal and Industry Effluent.

KEY MARKETS

MUNICIPAL Collection Systems Treatment Facilities	INDUSTRIAL WASTEWATER APPLICATIONS Compliance Reuse	ORGANIC WASTE-TO- ENERGY (Biogas) Anaerobic digestion Enhancement and Optimization
ORGANIC WASTE -TO- REUSE Composting	SEPTIC/CESSPOOLS LAGOONS	AQUACULTURE BODIES OF WATER

YDRO PROCESS[®] BENEFITS

The Ydro Process[®] An Integrated Biotechnology Solution for Wastewater & Organic Waste Treatment

Social Responsibility

Eliminate odors, trucks in the streets, sewer back-flows, etc., generated by wastewater & waste management

Environmental Responsibility

Reduce energy demand

Reduce by-product disposal

Reduce the overall carbon footprint of the system to levels incomparable to current methods and technologies ₿

Economic Benefits

Reduce annual O&M costs by 10% - 25% ROI: 3-10 Months "Each one of us holds a responsibility to future generations to be our best, to do our best and, to leave our best behind."

To learn how you can join the movement for a cleaner earth, contact us.

Meni Mancini

Founding Partner 5045 Orbitor Drive Building 12, Suite 201 Mississauga, ON L4W 4Y4

> T: 905.366.7660 C: 416.540.2179 F: 866.529.8497

meni@tradeworksinc.com www.tradeworksinc.com

Thank You

Cleaning Water for a Sustainable Future

www.tradeworksinc.com

pani

Digital Operator Coach[™] for Water & Wastewater Treatment Plants

existing hardware, existing people, existing data.

Copyright © Pani Energy 2020

3

The operator then follows the Coach's recommendations and adjusts the control setpoints to prevent system upset and improve plant performance

3

The Coach aggregates data from multiple sources in the plant

H. Co. J. W. C - O =

1

The Coach then runs the data through the platform's models and provides recommendations to operators

2

pani

Same process, higher efficiencies.

OPTIMIZATION

FORECASTING

INSIGHTS

ANALYTICS

EXISTING SYSTEMS (SCADA/DCS)

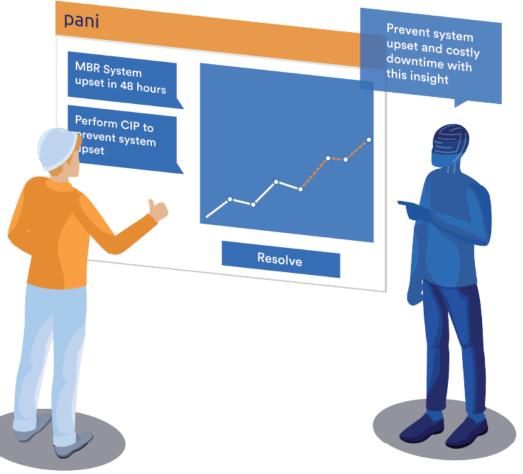
pani

OPERATIONAL INSIGHT FOR IMPROVED PLANT RELIABILITY AND PERFORMANCE

Secure, read-only access

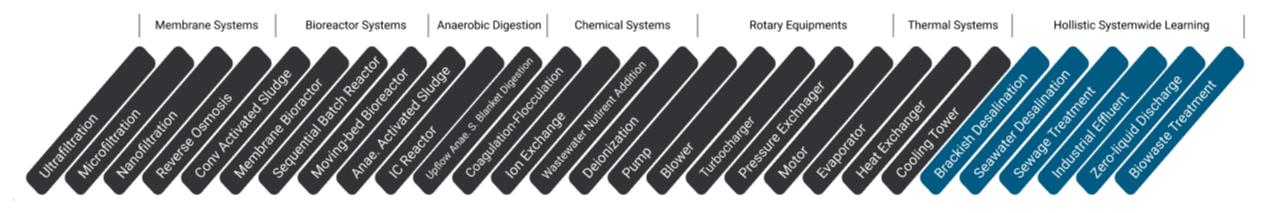
SEAMLESSLY INTEGRATES WITH EXISTING SYSTEMS AND PEOPLE

Al Operator Coach for water & wastewater treatment


Delivering tangible value at 0\$ CAPEX

Lower OPEX (2-25%)

Reduce Downtime (~20%)


Increase Equipment Life (3-15%)

Increase Plant Efficiency (2-15%)

Our AI technology is purpose built for treatment.

Confidential & Proprietary | Copyright © Pani Energy 2020

RO Use-Cases

Incumbent Solution

- Cannot predict membranes being damaged,
 and operators can only react.
 - X Downtime (lost production for adjacent bottling plant)
 - Reactive maintenance limits membrane life (higher expenses)

- Prevents downtime (saves \$500,000 in downtime)
- 6
- Extend membrane life (saves \$150,000 in replacement)

MEMBRANE FORECASTING DIGITAL OPERATOR COACH™

ය Overview 🗹	Data 🛛 🖓 Interactive	坦 Analytics 🖾 Insight	s			J ³ GL
IOIS	<	RO System / RO Train 3 Last updated 1 hour ago			Last Service Cleaning	23 Days Ago
RO Train 1	24 Days ⊘	Assessment			2. Recomme	nds when to Serv
RO Train 2	>30 Days 🕢	Туре	Criteria		Days	Remaining Status
RO Train 3	6 Days 🕚	Maintenance	statistic Running ho	ours since last clean	6	0
	12 Days 🛆	System limit	Product co	nductivity	12	Δ
RO Train 4	12 Days Zi	Normalized m	etric Salt passag	e increase	14	\odot
		System limit	Product flo	w rate	14	\odot
• New Skid		System limit	Pressure dr	op	16	\odot
		Normalized m	etric Product flo	w decline	22	\odot
		System limit	Feed pump	speed	22	\odot
		System cost	Economic li	ife - cleaning	>30	\odot
		System cost	Economic li	ife - replacement	>30	\odot
		Maintenance	statistic Running ho	urs since last replacement	>30	\odot
		▲ System Limit / Prod ➡ Forecast Wed. Nov 15 - Sat, No	40	Product Conductivity -O- Forecast -O-	Limit	2020-11-22 2020-11-26 🗎
		(Criteria exceeded in 1) i≡ Criteria Product conductivity a	0-14 days) 35 poove its limit of 375 μs/cm. 30			~
		Consequences Non-compliant water.	25	0		
		Alternate Actions	20			

1. Forecasts membrane performance degradation

RO Use-Cases

Incumbent Solution

Cannot predict membranes being damaged,
 and operators can only react.

Cannot predict change in influent conditions. Uncertainty over polymer/FeCl3 dosing rates

- X High chemical costs (overdosing)
- Compromised water quality downstream (compliance fines)

AI Coach forecasts degradation, recommends when
 to service and how to service (clean, flush, replace)
 membrane assets:

Al Coach forecasts influent conditions 48 hours in advance. Prescribes dosing rates.

12% savings in chemicals

• Avoid fines from missing water quality targets

INSIGHTS: REAL-TIME RECOMMENDATIONS DIGITAL OPERATOR COACH™

earch By system or component	1. Al Coach r	otifies O&M team when	simulations forecast an iss
✓ ✓ Warning Long-term performance impacts			1 Unreso
RO-A Pressure Drop Forecast Warning UNRESOLVED The Pressure Drop of RO-A is forecasted to exceed the SOP of 1.	2 kg/cm² within 48 hours	🖋 Con	RO Train A, Membrane Rack sider changing booster pump or cartridge filter operating setpoli Acknowledge Snooze Remov
RO DPIT [DPIT - 101] RO DPIT [DPIT - 101] SOP Indic kg/cm ²	ator		
1.15			m on
1	\sim \sim	mann	
0.9 M M M M M M M M M M M M M M M M M M M	w www	V	
0.85 0 05:09:51 12:30:00 2020-10-28 2020-10-28	12:30:00 2020-10-29	12:30:00 2020-10-30	12:30:00 22:42:17 2020-10-31 2020-10-

RO Use-Cases

Incumbent Solution

Cannot predict membranes being damaged,
 and operators can only react

Cannot predict change in influent conditions. Uncertainty over polymer/FeCl3 dosing rates

Sensors drift over time. Operators rely on
 manual analysis to detect faults

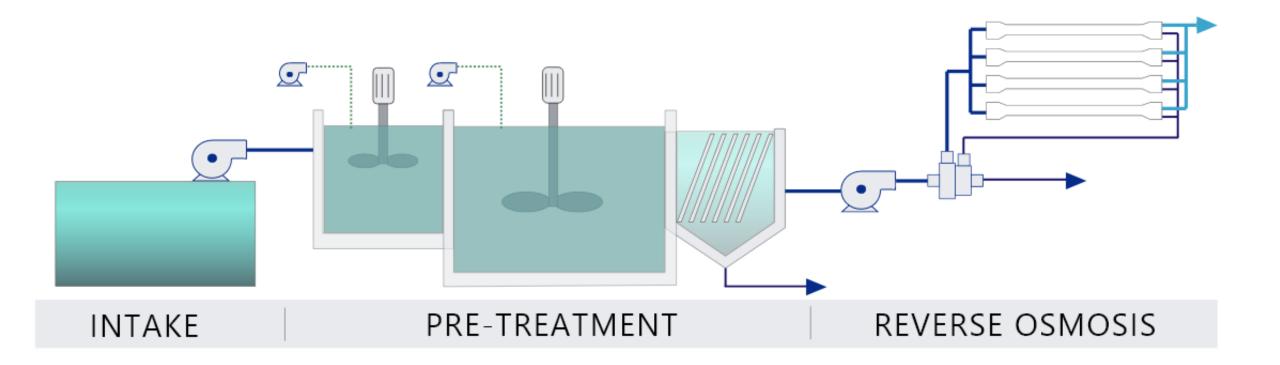
- Costly and manually intensive fault detection
- X Decisions made on inaccurate readings may compromise plant reliability

AI Coach forecasts degradation, recommends when
 to service and how to service (clean, flush, replace)
 membrane assets:

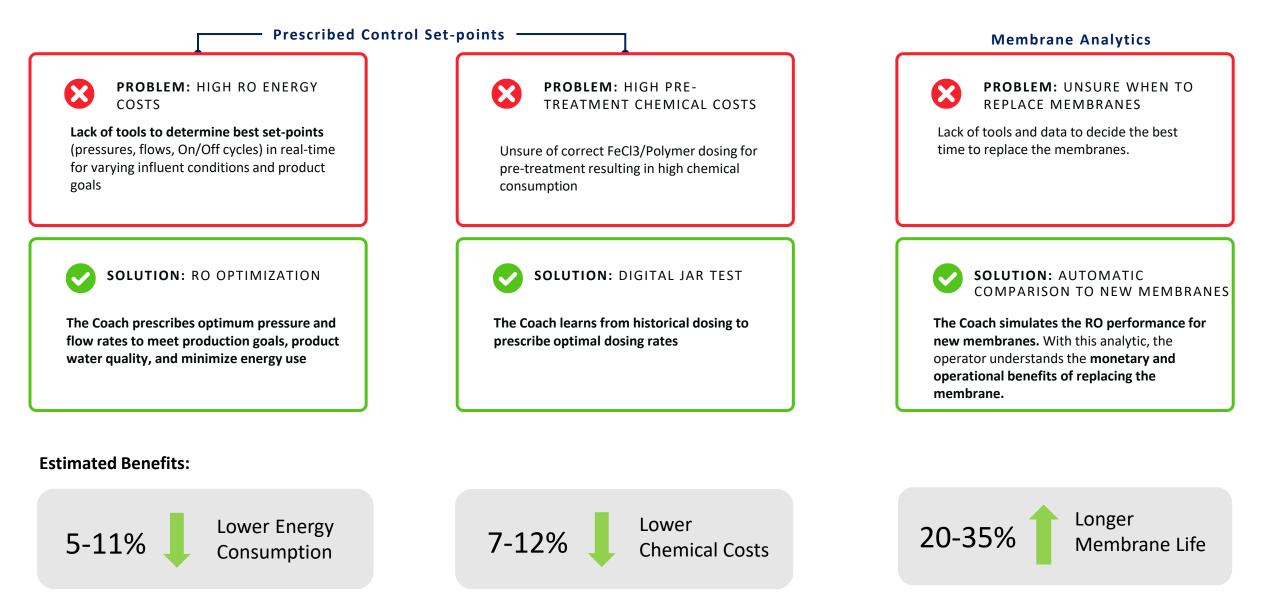
AI Coach forecasts influent conditions 48 hours in advance. Prescribes dosing rates

AI Coach runs cloud-based simulations to analyze trends and predict sensor faults in advance:

Lower O&M costs



Eliminate guesswork and manual analysis


Background: Reverse Osmosis Case Study (1/3)

CLIENT: One of Asia's largest manufacturers

PLANT: 6MLD desalination facility for power plant and other industrial end use

Solution Summary: Reverse Osmosis Case Study (2/3)

Disclaimer: These are not, in any way claims for what your plant may receive in savings, rather projections from our models and past experience with treatment plants.

See what global water leaders are saying about Pani's Digital Operator Coach™

"Pani's advanced analytic solution helps optimize water/wastewater processes such as chemical consumption for varying input water quality. Pani's intuitive user interface directly recommends operator in real-time to prevent unplanned downtime and optimize shut-down & maintenance activities.

It is an **economic solution for companies to adopt**, in both emerging and developed markets."

Vekatesh. M, Head of Technical Services

"Operation and maintenance of treatment systems can now be **optimized beyond long-perceived** standards using Pani's Al Operator Coach.

Pani is opening the door to drastically improved life cycle costs in many facets of treatment."

Ashu S., Project Lead

Digital Operator Coach™

Cloud-based, ML platform for process optimization of water and wastewater infrastructures

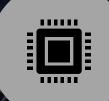
- Holistic plant optimization (WTP and WWTP: biological, chemical, membrane)
- ROI based SaaS model (\$0 CapEx)
- Pani's water experts handle integration (~10 hours for setup)

Looking for:

Pilot implementations

pani

Artificial Intelligence for Water


We terlix^{Inc.}

Our Work

0

Artificial Intelligence Solutions

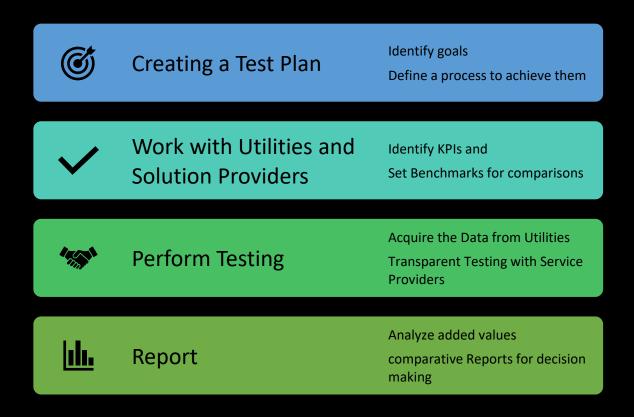
00

Supporter of Open Data

Assess Al Solutions

- Revenue management,

- Energy Saving


Weterlix^{Inc.}

Al

Solutions

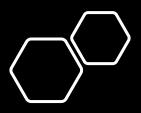
•Short term analysis of demand Water Demand •Connecting Demand at account level to economical indices Analysis Tracking changes by location SCADA Data Analysis •Identify Anomalies (Watermain Breaks, etc.) Condition •Using Geo-Data and Assessing the Process of Break in the Water Network Assessment Remote Sensing • Pollution Monitoring in Lakes and Ocean Identifying Pollution Pollution Analysis in Sources Water Bodies •Analysis of Sewer Process, Developing predictive models to Sewer Treatment reduce the energy consumption in the treatment process Optimization •Sewer treatment in near freezing temperatures

Assess New Al Solutions

Weterlix^{Inc.}

C

Revenue Management and pricing (Water/Sewer Services)


Pump Schedule Optimization

Energy Saving Carbon footprint reduction Operation Research Solutions

We ter lix

Optimal Assignment of Resources for Municipal Projects

Our Customers

Canada

- City of Kitchener, ON
- City of Guelph, ON
- City of London, ON
- Niagara Region, ON (New)

The United States of America (New)

- Suez, New York
- Dallas Water Utilities, Texas
- Durham Utilities, North Carolina